Департамент образования администрации Владимирской области Областное государственное учреждение среднего профессионального образования «Вязниковский механико-технологический техникум»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО КУРСОВОМУ ПРОЕКТИРОВАНИЮ ПО ДИСЦИПЛИНЕ «КОТЕЛЬНЫЕ УСТАНОВКИ»

/для студентов специальности 140102 «Теплоснабжение и теплотехническое оборудование»/

дисциплин	Протокол №	
	OT «»	200 г.
Председатель комиссии общепрофессиональных	И	
теплотехнических дисци		_ Соколов В.С.
Методические указания с		
«Вязниковский механико-техн	ологический техн	икум» Серов С.В.
Рецензент:		

Зам. главного энергетика ОАО «ОСВАР» Столяров С.А. Преподаватель теплотехнических спецдисциплин ОГОУ СПО

технологический техникум» Л.В. Хорохонова

«Вязниковский механико-

Введение

Курс «Котельные установки» является ключевым в подготовке специалистовтехников для обслуживания промышленной теплоэнергетики, так формирует у студентов знания в области наиболее сложных теплообменных аппаратов, где представлено большинство процессов теплообмена, а также закрепляет знания полученные студентами в курсах: «Теоретические основы теплотехники», «насосы», «экология», «гидравлика», «материаловедение».

Знания, полученные при изучении курса, закрепляются в курсовом проекте. В процессе выполнения курсового проекта студенты должны приобрести практические навыки в расчете парового или водогрейного котла, более глубоко усвоить теоретические положения и ознакомиться с действующими нормативными материалами, а также подготавливаются к выполнению дипломного проекта.

При выполнении курсового проекта студенты должны произвести тепловой, аэродинамический и, по возможности, прочностной расчеты.

Существуют два вида теплового расчета: конструктивный и поверочный. Первый используется для проектирования новой конструкции котлоагрегата и чаще всего предлагается будущим инженерам-проектировщикам.

Второй вид расчета_ поверочный -чаще предлагается техникам-эксплуатационникам.

Руководитель проекта может задать любой вид расчета, но в настоящих методических указаниях рекомендуется поверочный расчет с элементами конструктивного расчета отдельных поверхностей нагрева.

При выполнении курсового проекта можно применять вычислительную технику, особенно при расчете $I-\theta$ диаграммы продуктов сгорания.

Задача курсового проектирования . Объем проекта.

При курсовом проектировании закрепляются знания теоретических курсов и приобретаются навыки пользования расчетными нормативными и проектными материалами. Студенты осваивают тепловой, аэродинамический расчеты, детально изучают конструкцию заданного типа парового котла и условия его эксплуатации.

На основе теплового расчета студенты проводят принципиальную проработку поверхностей нагрева котлоагрегата. Она заключается в определении необходимых размеров радиационной тепловоспринимающей поверхности топочной камеры, конвективных поверхностей нагрева, обеспечивающих заданную производительность, а также максимальную эффективность. Полученную в ходе теплового расчета поверхность нагрева нужно разместить в котлоагрегате с указанием числа труб в ряду, числа рядов, шага труб, обеспечением расчетной скорости газов. Устанавливаются габаритные размеры основных частей парового котла – топки, конвективных поверхностей нагрева:

пароперегревателя, экономаизера, воздухоподогревателя. Определяются воздушно-газовые сопротивления всех частей котла с указанием общего сопротивления и выбора тягодутьевых устройств.

Курсовой проект состоит из расчетно-пояснительной записки, включающей описание котла, поверочный тепловой расчет, определение воздушно-газовых сопротивлений и двух листов чертежей

Методические указания к расчету парового котла

Каждому студенту выдается индивидуальное задание, которое включает:

- Тип котла;
- Номинальная производительность;
- Давление пара;
- Температура перегретого пара;
- Месторождение и марка топлива;
- Температура питательной воды;
- Величина непрерывной продувки;
- Хвостовые поверхности нагрева.

Кроме указанных, могут быть заданы и другие параметры, необходимые для расчета (температура горячего и холодного воздуха, способы его подогрева, температура воды на выходе из экономайзера и т.д.)

Тепловой расчет котлоагрегата выполняется студентами в международной системе единиц (СИ).

По ходу расчета необходимо давать краткие обоснования и соответствующие пояснения.

Разделы работы обязательно отделяются четко оформленными заголовками. Иллюстрации (на миллиметровке) должны содержать $I-\theta$ диаграмму продуктов сгорания и другие необходимые для выполнения задания схемы и диаграммы. Графическая часть курсового проекта состоит из двух листов формата 594х841. Пояснительная записка и графическая часть должны удовлетворять требованиям ЕСКД ГОСТ 2.105-79 и ГОСТ 2.106-68.

Спецификация вшивается в пояснительную записку. В нее вносятся составные части, относящиеся к специфицируемому изделию. Спецификация выполняется и оформляется на отдельных листах формата А 4 по форме согласно ЕСКД Исходными геометрическими параметрами для выполнения чертежей парового котла и его отдельных поверхностей нагрева являются величины, полученные при тепловом расчете и из литературы.

Чертежи должны содержать основные габаритные и характерные размеры. На отдельных поверхностях нагрева должны быть обозначены габариты, шаги труб, число и диаметр параллельно включенных труб и т.д.

На чертежах проекций должны быть изображены лазы, предохранительные клапаны и другая арматура, входные и выходные коллекторы пучков, сепарационные и продувочные устройства.

Студент должен детально разобраться в конструкции узлов и дать объяснения по их выполнению, условиям работы, сборке и разборке, а также назначению и месту в конструкции котлоагрегата.

Таблица 3.1. Расчетные значения присосов воздуха в топку и в газоходы паровых и водогрейных котлов при номинальной нагрузке

Топочные камеры и газоходы	Присос воздуха
	1
Топочные камеры пылеугольных котлов с твердым шлакоудалением и металлической обшивкой труб экрана	0,05
То же с обмуровкой и общивкой	0,07
» без металлической общивки	0,1
Топочные камеры слоевых механических и полумеханических	l ŏ,i
топок) ","
Фестон, ширмовый пароперегреватель, первый котельный пучок котлов производительностью $D>50$ т/ч	0
Первый котельный пучок конвективной поверхности нагрева	0,05
котлов производительностью $D \leq 50$ т/ч	
Второй котельный пучок конвективной поверхности нагрева кот-	0,1
лов производительностью $D\leqslant 50$ т/ч	}
Пароперегреватель	0,03
Водяной экономайзер котлов производительностью $D>50$ т/ч	0,02
(на каждую ступень)	1
Водяной экономайзер котлов производительностью $D \leqslant 50$ т/ч:	}
стальной	0,08
чугунный с общивкой	0,1
чугунный без обшивки	0,2
Воздухоподогреватели трубчатые, на каждую ступень:	,
для котлов с $D>50$ т/ч	0,03
для котлов с $D\leqslant 50$ т/ч	0,06
Золоуловители циклонные и батарейные	0,05
Газоходы стальные (на каждые 10 м длины)	0,01
» кирпичные (на каждые 10 м длины)	0,05
· · · · · · · · · · · · · · · · · · ·	

газа,

} 	Доля золы топлива в уносе,		и С		1
%	химиче	C K O K	0	0—0,5	0,5
Потери от неполноты горения, %	отлов , т/ч *	75-400	6-4	0,5—1	
еполноти	й для к Бностью	50	1 1	2—3	
отери от н	механической для котлов производительностью, т/ч *	. 35		3 2—3	0
	A II	25	1	3 22	
опочного	объема, кВт/м³, для котлов производительностью (т/ч)	75—400	140	175 185 160	350
рузка т	м ⁸ , для льностьк	50	1 1	185 210 185	
ная наг	іа, кВт/і зводител	35		210 245 210	405
Удель	объем прои	25		255 290 255	
	Топливо		Антрацитовый штыб и полуантрациты Тощие угли	Каменные угли Бурые угли Фрезерный торф	Мазут Природный газ

V Q

ĸ

Кроме того, необходимо проанализировать условия эксплуатации отдельных узлов и причины выхода их из строя.

Курсовая работа содержит следующие разделы:

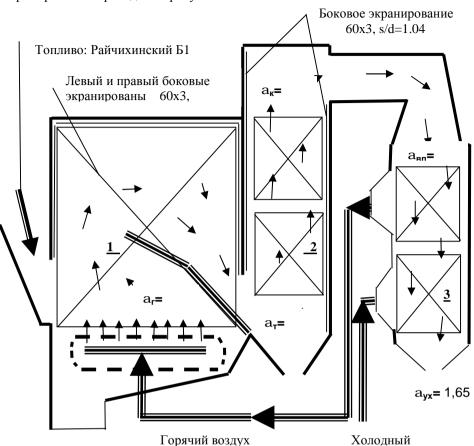
Введение.

- 1. Цель проекта.
- 2. Описание котла.
- 3. Характеристика котла.
- 4. Технологическая часть.
- 4.1 Исходные характеристики топлива.
- 4.2 Определение объемов воздуха, продуктов сгорания и энтальпии продуктов сгорания
- 4.3 Тепловой баланс парогенератора или водогрейного котла
- 4.4 Расчет теплообмена в топке.
- 4.5 Расчет пароперегревателя
- 4.6 Расчет конвективных пучков
- 4.7 Расчет и выбор водяного экономайзера.
- 4.8 Расчет воздухоподогревателя.
- 5. Аэродинамический расчет котлоагрегата.
- 6. Вывол
- 7. Графическая часть.

Лист 1:Продольный или поперечный разрез котлоагрегата совместно с хвостовыми поверхностями нагрева.

Лист 2: План котельного агрегата с хвостовыми поверхностями нагрева.

Методика расчета


4. Технологическая часть

4.1 Исходные данные для расчета продуктов сгорания топлива

- 4.1.1 Расчетные характеристики топлива приведены в таблице 2.1, 2.2 Л-1. Из таблиц необходимо выписать состав топлива и, если необходимо, произвести перерачет на рабочую массу топлива с учетом заданной зольности A^c и влажности W^p (табл.2.6 Л-1).
- 4.1.2 Коэффициент избытка воздуха α_m принимается в зависимости от вида топлива и способа его сгорания по табл. 3.2 Л-1.
- 4.1.3 Расчетная схема газовоздушного тракта котла строится с целью определения направления потоков воздуха и продуктов сгорания, определения взаиморасположения и последовательности омывания газами поверхностей нагрева, а также с целью представления основной информации для последующих расчетов топочной камеры, конвективной части котла и хвостовых поверхностей нагрева.

На схеме условно показываются: подвод к котлу топлива и его марка (месторождение); подвод воздуха к котлу; линии тока продуктов сгорания в топочной камере, камере догорания, конвективных пучках и хвостовых поверхностях нагрева; значение коэффициента избытка воздуха за горелкой (a_r), на выходе из топки (a_τ), за котлом (a_κ), на входе и выходе экономайзера или воздухоподогревателя ($a c_n$, $a c_n$, или $a c_n$, тип применяемых горелок или топочного устройства.

Пример схемы приведен на рисунке.

Расчетная схема газо-воздушного тракта

где 1 -экран топки: трубы 60x3, s/d = 1.0;

- 2 конвективные пакеты из труб 28х3; $S_1 = 50$; $S_2 = 45$;
- 3 воздухоподогреватель или водяной экономайзер (чугунный, стальной)
- 4.1.4 Используя схему котла, выписать необходимые поверхности нагрева, именуемые в дальнейшем газоход, и по каждому из них определить долю присосов воздуха $\Delta\alpha$;

 $\Delta\alpha$ определяется по табл. 3.1 Л-1. Коэффициент избытка воздуха за газоходами определяется нарастающим итогом путем суммирования избытка воздуха за предшествующим газоходом с присосом очередного по ходу газов по формуле: $\alpha_{\Gamma}'' = \alpha_{\Gamma}' + \Delta \alpha_{m}$, где Γ – газоход (поверхность нагрева)

1 аолица 4.5. Потеря теплоты от наружного охлаждения парового котла

Номинальная производительность	Потеря	теплоты, %
котла, кг/с (т/ч)	Собственно котел	Котел с хвостовыми поверхностями
0,55 (2) 1,11 (4) 1,67 (6) 2,22 (8) 2,78 (10) 4,16 (15) 5,55 (20) 8,33 (30) 11,11 (40) 16,66 (60) 22,22 (80) 27,77 (100) 55,55 (200) 83,33 (300)	3,4 3,1 1,6 1,2 — — — — — — — — —	3,8 2,9 2,4 2,0 1,7 1,5 1,3 1,2 1,0 0,9 0,8 0,7 0,6 0,5

Таблица 4.6. Потеря теплоты от наружного охлаждения водогрейного котла (ориентировочно)

Номиналь- ная мощность котла, МВт	1	2	3	5	10	20	30	40	60	100
Потеря, %	5	3	2	1,7	1,5	1,2	1,0	0,9	0,7	0,5

Для парогенераторов низкого давления с хвостовыми поверхностями нагрева температуру входящих газов рекомендуется принимать не менее следующих значений (°C):

Угли с приведенной влажностью 0,7 кг·10 ² /МДж и природный газ	120-130
Угли с приведенной влажностью 1—5 кг·10 ² /МДж	140150
Masyr	150-160
Торф и древесные отходы при установке воздухоподогревателя	170—190

Tаблица 3.2. Расчетные значения коэффициента избытка воздуха на выходе из топки $\alpha_{\rm T}$

Топливо	Значение		
Донецкий антрацит АС и АМ (A^{π} =0,5) Каменные угли типа кузнецких Г и Д (A^{π} =0,3), донецких Г и Д (A^{π} =0,8) жизучили СС (A^{π} =0,4)	1,6—1,7 1,4—1,5		
$(A^n = 0,0)$, кузнецких ГСС $(A^n = 0,4)$ Бурые угли типа ирша-бородинского $(W^n = 2,1; A^n = 0,4)$, артемовского $(W^n = 1,8)$, веселовского $(W^n = 2,0; A^n = 1,5)$, подмосковного $(W^n = 3,0; A^n = 2,1)$, харанорского $(W^n = 3,2; A^n = 0,7)$	1,4—1,5		
Донецкий антрацит AC и AM $(A^{\pi}=0.5)$	1,5—1,6		
Все топлива, указанные для топок с пневмомеханическими забрасывателями и неподвижной решеткой	1,31,4		
Антрацитовый штыб, полуантра- циты, тощие угли и фрезерный	1,2—1,25		
торф Мазут и природный газ	1,1		
Рубленая щепа ($W^{ m p}=50~\%$) Дробленые отходы и опилки ($W^{ m p}=50~\%$)	1,2 1,3		
	Понецкий антрацит АС и АМ (A^{Π} =0,5) Каменные угли типа кузнецких Γ и \mathcal{A} (A^{Π} =0,3), донецких Γ и \mathcal{A} (A^{Π} =0,8), кузнецких ICC (A^{Π} =0,4) Бурые угли типа ирша-бородинского (W^{Π} =2,1; A^{Π} =0,4), артемовского (W^{Π} =1,8), веселовского (W^{Π} =2,0; A^{Π} =1,5), подмосковного (W^{Π} =3,0; A^{Π} =2,1), харанорского (W^{Π} =3,2; A^{Π} =0,7) Понецкий антрацит АС и АМ (A^{Π} =0,5) Все топлива, указанные для топок с пневмомеханическими забрасывателями и неподвижной решеткой Антрацитовый штыб, полуантрациты, тощие угли Каменные, бурые угли и фрезерный торф Мазут и природный газ Рубленая щепа (W^{Π} =50%) Дробленые отходы и опилки (W^{Π} =		

Примечание. Меньшие значения $\alpha_{ extbf{T}}$ для паровых котлов производительностью D>10 т/ч.

', " - на входе в газоход и на выходе из газохода соответственно Например, α_m "= α_m ′ + Δ α_m , где m – топка и т.д. по ходу движения дымовых газов.

4.1.5 Средний коэффициент избытка воздуха:

$$\alpha_{\Gamma}^{cp} = \frac{(\alpha_{\Gamma}' + \alpha_{\Gamma}'')}{2}$$

Например,

$$\alpha_m^{\text{cp}} = \frac{(\alpha_m' + \alpha_m'')}{2}$$

где α_m' - избыток воздуха перед газоходом, равный избытку воздуха за предыдущим газоходом.

 $\alpha_{m}'' = \alpha_{nn}'$ и т.д. (*nn* - пароперегреватель).

4.2 Расчет объемов воздуха и продуктов сгорания топлива.

7.2 1 acqem 0	овемов возбухи и пробуктов (гориния топливи.
Показатель	Твердое и жидкое топливо $(m^3/\kappa\Gamma)$	Газообразное топливо (m^3/m^3)
Теоретический объем воздуха, необходимого для полного сгорания 1 кг или 1 м ³ топлива	$V_{B}^{o} = 0.0889 \cdot (C^{P} + 0.375S_{\Pi}^{P}) + 0.265 \cdot H_{P} - 0.0333 \cdot O^{P}$	$V_{B}^{o} = 0.0478[0.5 \text{ CO} + 0.5]$ $H_{2} + 1.5 H_{2}S + \Sigma(m + \frac{n}{4})\text{C}m \text{ H}n - \text{O}_{2}]$
Теоретический объем сухих трехатомных газов в продуктах сгорания топлива	$V_{RO^2} = 0.0187(C^P + 0.375 \cdot S^P_{\pi})$	$V_{RO^2} = 0.01(CO_2 + CO + H_2S + \Sigma mCm Hn)$
Теоретический объем азота	$V_{N2}^{o} = 0.79 \cdot V_{B}^{o} + 0.8 N^{P}/100$	$V^{o}_{N2} = 0.79 \cdot V^{o}_{B} + 0.01 N_{2}$
Теоретический объем водяных паров	$V^{o}_{H^{2}O} = 0,111 \text{ H}^{P} + 0,0124 \cdot W^{P} + 0,0161 \cdot V^{o}_{B}$	$V_{H2O}^{o} = 0.01 (H_2S + H_2 + \Sigma \frac{n}{2} Cm Hn + 0.124d r.mn) + 0.0161 \cdot V_{B}^{o}$

При расчетах в формулы вводятся содержания компонентов топлива в объемных процентах. Величины m и n равны соответственно числам атомов углерода и водорода в химической формуле углеводородов, входящих в состав данного топлива.

d г.mn – влагосодержание газообразного топлива 1 м³ сухого газа, принимается 10 г/ м³. Дальнейший расчет объемов продуктов сгорания с учетом избытка воздуха (α >1) производится по одним и тем же формулам для всех видов топлива.

Действительный объем водяных паров ${\rm M}^3/{\rm Kr}~({\rm M}^3/{\rm M}^3)$:

$$V_{H2O} = V_{H2O}^{o} + 0.0161(\alpha_{cp} - 1) \cdot V_{B}^{o}$$

Определяем суммарный объем продуктов сгорания ${\rm M}^3/{\rm Kr}~({\rm M}^3/{\rm M}^3)$:

$$V_{\partial.z} = V_{RO^2} + V_{N^2}^o + V_{H^2O} + (\alpha_{cp} - 1) \cdot V_B^o + 0.0161(\alpha_{cp} - 1) \cdot V_B^o$$

Парциальное давление трехатомных газов и водяных паров:

$$P_{RO^2} = \frac{V_{RO^2}}{V_{\partial.c}} \cdot P$$

$$P_{\rm H2O} = \ \frac{V_{\rm H2O}}{V_{\partial.\it{e}}} \ \cdot P$$

Так как практически P=1 атм., то парциальные давления численно равны их

объемным долям

$$P_{RO2} = r_{RO2}$$

$$P_{H2O} = r_{H2O}$$

Общая объемная доля трехатомных газов и водяных паров

$$r_n = r_{\text{RO}2} + r_{\text{H2O}}$$

Результаты расчета объемов продуктов сгорания и парциальных давлений сводим в таблицу1:

Объемы продуктов сгорания, объемные доли трехатомных газов, концентрация 307141

30.00	<i>οι</i> .				
Наименование величины и расчетная	Размер	V_{B}^{o}	V_{RO^2}	V_{N2}^{o}	$V^{o}_{H^{2}}$
формула	ность	П	оверхност	ги нагре	
Коэффициент избытка воздуха за	-				
газоходом α г"					
Величина присосов Δ α	-				
Средний коэффициент избытка воздуха	-				
в газоходах α _{ср}					
Действительный объем водяных паров	м ³ /кг				
$V_{H2O} = V_{H2O}^{o} + 0.0161(\alpha_{cp} - 1) \cdot V_{B}^{o}$	$({\rm M}^3/{\rm M}^3)$				
Суммарный объем продуктов сгорания	м ³ /кг				
$V_{\partial.\varepsilon} = V_{RO^2} + V_{N^2}^0 + V_{H^2O} +$	(m^3/m^3)				
$(\alpha_{cp} - 1) \cdot V_B^0 + 0.0161(\alpha_{cp} - 1) \cdot V_B^0$					
Парциальное давление трехатомных	-				
газов $P_{RO^2} = r_{RO^2} = V_{RO^2} / V_{\partial.2}$					
Парциальное давление водяных паров	-				
$P_{H2O} = r_{H2O} = \frac{V_{H2O}}{V_{o.c}}$					
Общая объемная доля водяных паров и					
трехатомных газов $r_n = r_{\text{RO2}} + r_{\text{H2O}}$					
Концентрация золы					
$\mu = 10 \cdot \frac{A^{P} \cdot a_{vH}}{V_{o.c}}$	г/ м ³				

Примечание: a_{vh} - доля золы топлива, уносимая газами, для камерных топок при сжигании твердого топлива $a_{vH} = 0.95$, для слоевых топок по табл. 4.1-4.4 Л-1

Энтальпия воздуха и продуктов сгорания.

Энтальпия сгорания определяется на 1 кг твердого или жидкого топлива или на 1 м³ сухого газообразного топлива по формуле:

$$I_{\alpha \beta} = I_{\alpha \beta}^{0} + (\alpha_{cp} - 1) I_{\alpha}^{0} + I_{\beta \alpha}^{1}, \quad \kappa / \chi / \kappa \Gamma (\kappa / \chi / M^{3})$$

 $I_{\partial.z}=I^0_{\partial.z}+(~\alpha_{cp}-1)~I^0_{~g}+I_{3\eta}$, кДж/кг (кДж/м³) где $I^0_{~\partial.z}-$ энтальпия теоретического объема продуктов сгорания для всего выбранного диапазона температур (100-2200 0 C)

$$I^{0}_{\partial,z} = V_{RO2}(c\theta)_{RO2} + V^{0}_{N2}(c\theta)_{N2} + V^{0}_{H2O}(c\theta)_{H2O},$$
кДж/кг (кДж/м³)

	и цепной	и цепной решеткой обратного хода	эратного х	ода			
	Удельная нагрузка	нагрузка	Потерн от не сгора	Потерн теплоты от неполноты сгорания, %	Доля золы	Воздух, под	Воздух, подаваемый под решетку
Топливо	зеркала горения, кВт/м³	топочного объема, кВт/м³	хими- ческой	механнуе- ской *	топлива в уносе, * %	Давле- ние рв. Па	Tewneparypa 'a, °C
Каменные угли: типа кузнецких Γ и Д ($A^{\Pi}=0,3$) типа донецких Γ и Д ($A^{\Pi}=0,3$)	= 1400—1740			5,5/3 6/3,5	20/9 17/7,5		25 или
типа сучанского $(A^{\rm u}\approx 1,4)$	1400—1620			7,5/5,5	11/5		150200
типа кузнецкого ІСС ($A^{\Pi} = 0,4$)				11/5	20/8		
Бурые угли: типа ирша-бородинского ($W^{\Pi} = 0.1$, $A = 0.0$, A)	14001740	290—460	0,5-1,0	6/3	21/12	200	150-200
THIS APPENDECTOR ($\overline{W}^{\text{II}} = 1,8;$				5,5/4	19/8,5		
$A^{n} = 1,0$ THIR BECCHOBCKOLO ($W^{n} = 2,0$;				7,5/5,5	15/7		
$A^{n} = 1,3$) типа харанорского ($W^{n} = 3,2$; $A^{n} = 0,7$)				7/4	19/8,5		
типа подмосковного ($W^{n}=3,0;$ $A^{n}=2,1)$	1160—1400			7,5/5	11/5		

возвратом уноса. Примечан

Таблица 4.2. Расчетные характеристики слоевых топок с пневмомеханическими забрасывателями и и цепной решеткой обратного хода

	Удельная нагрузка	нагрузка	or her cropal	Потери теплоты от неполноты сгорания, %	Доля золы	Воздуж, под	Воздух, подаваемый под решетку
Топливо зерн горе к В	зеркала горения, кВт/м ³	топочного объема, кВт/м³	хими-	механиче- ской *	топлива в уносе, * %	Давле- ние рв. Па	Temneparypa t _B , °C
Каменные угли: Γ и Д ($A^n=0,3$) 1400—тила донецких Γ и Д ($A^n=0,8$)	= 1400—1740			5,5/3 6/3,5	20/9 17/7,5		25 или
типа сучанского $(A^{II} = 1,4)$ 1400-	1400—1620			7,5/5,5	11/5		150-200
типа кузнецкого ICC ($A^{\rm II} = 0,4$)				11/5	8/07		
Бурые угли: тяпа ирша-бородинского ($W^{II} \approx 1400$ –	1400-1740	290—460	0,5-1,0	6/3	27/12	200	150—200
$= Z_1 I_1 A^{\perp} = U_1 A_1$ THIR ADTEMOBEROIO ($W^{\Pi} = 1.8$;				5,5/4	19/8,5		
$A^{n} = 1.0$ THIS BECCHOBCKOFO ($W^{n} = 2.0$;				7,5/5,5	15/7		
$A^{n} = 1,3$) типа харанорского ($V^{n} = 3,2$; $A^{n} = 0,7$)				7/4	19/8,5		
типа подмосковного ($W^{n}=3.0$; 1160— $A^{n}=2.1$)	1160—1400		aray an ay an ay ang	7,5/5	11/5		

Q для топок, не оборудованных средствами уменьшения уноса, знаменатель

где $(c\theta)_{RO^2}$, $(c\theta)_{N^2}$, $(c\theta)_{H^{2O}}$ - средние удельные энтальпии газов, входящих в состав продуктов сгорания, кДж/м 3 табл.3.4 (Л-1)

 $I_{\it g}^{0}$ – энтальпия теоретического объема воздуха для всего выбранного диапазона температур (100-2200°C)

$$I_e^0 = V_e^0(c\theta)_e$$

 $(c\theta)_{s}$ – энтальпия 1 м^{3} воздуха, кДж/м 3 , принимается для каждой выбранной температуры по табл. 3.4 (Л-1)

 $I^{\epsilon}_{us\delta}$ — энтальпия избыточного количества воздуха для всего выбранного диапазона температур (100-2000 0 C)

$$I_{us\delta}^{e} = (\alpha_{cp} - 1) I_{e}^{0}, кДж/кг (кДж/м^{3})$$

Если приведенная величина уноса золы из топки

$$100 \cdot \frac{a_{v_H} \cdot A^P}{Q^P_H} > 6,$$

то к энтальпии дымовых газов следует добавить энтальпию золы:

$$I_{3\pi} = 0.01 \cdot a_{vH} \cdot A^{P}(c\theta)_{3\pi}$$
, где

 $(c\theta)_{33}$ — энтальпия 1 кг золы, кДж/кг, определяется по табл. 3.4 (Л-1)

Результаты расчета энтальпии продуктов сгорания по газоходам котлоагрегата сводят в таблицу 2.

Данные таблицы 2 позволят в последующих расчетах по температуре продуктов сгорания определить энтальпию

$$I_x = \frac{I_{\delta} - I_{M}}{100} (t_{u_{3\theta}} - t_{M}) + I_{M}, (I)$$

или, наоборот, по энтальпии продуктов сгорания – их температуру

$$t_x = t_M + \frac{I_{u_{36}} - I_M}{I_{6} - I_M} \cdot 100$$
 (II)

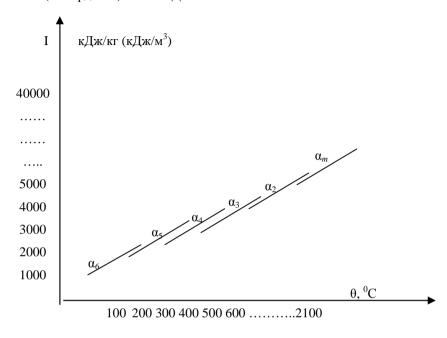
При этом производится линейная интерполяция в интервале температуры 100 К. I_6 и $I_{\scriptscriptstyle M}$ – энтальпии, соответствующие большей и меньшей температурам искомого интервала температур, приведенным в табл. 3.5 (Л-1)

 ${
m t}_{{}_{\!\!436}}$ — температура, для которой вычисляется энтальпия, ${}^{0}{
m C}$; ${
m t}_{{}_{\!\!4}}$ — температура, соответствующая меньшей энтальпии искомого интервала, ${}^{0}{
m C}$; ${
m I}_{{}_{\!\!436}}$ — энтальпия, по значению которой определяется температура.

Таблица 2	Энтальпия	продуктов	сгопания
i aomina 2	Juliumonum	IIDOO VICIIIOO	CCODUITUR

Таолица 2 Энта	льпия прооукте	ов сгорині	лл		
	Температура				
Поверхность нагрева	после	I_{θ}^{0}	$I^0_{\partial.\mathcal{E}}$	$I^{e}_{u3\delta}$	$I_{\partial.z}$
поверхность нагрева	поверхности	1 6	1 ∂.∂	1 <i>u</i> 36	1∂.∂
	нагрева, ⁰ С				
Верх топочной камеры,	2000				
фестон,	1900				
$\alpha_m =$	1800				
	1700				
	1600				
	1500				
	1400				
	1300				
	1200				
	1100				
	1000				
	900				
	800				
Пароперегреватель,	1000				
$\alpha_{nn} =$	900				
	800				
	700				
	600				
	500				
Конвективные пучки,	700				
$\alpha_{\kappa} =$	600				
	500				
	400				
	300				
	200				
Водяной экономайзер,	400				
$\alpha_{\mathfrak{S}\kappa} =$	300				
	200				
Воздухоподогреватель,	200				
$\alpha_{en} =$	100				

Примечания к таблице


При составлении табл. $I-\theta$ рекомендуется для каждого значения коэффициента избытка воздуха определить величину I в пределах, немного превышающих реально возможные температуры в газоходах. Около величин I целесообразно помещать величину Δ I – разность двух соседних по вертикали значений I при

Плотность газа при	пормальных условиях, кг/м³	0,837 0,786	0,764 0,772	0,786	0,789	0,712	0,740	277.0	0,7,0	0,776	0,858	0,733	0.748	0,751	0,728	0,741	0,766	0,758	0,789	0,782	0,776	0,000
Низшая теплота сгорания	сухого газа, кДж/м³	35 800 36 130	36 090 36 550	35 340	30 980	35 880	35 500	000	37 300 37 300	37 870	36 800	35 040	36 680	36 260	35 630	35 840	37 090	36 720	36 470	37 010	37 550	41 (00
pan approvide to the		0.8	0.0	000	0.1	0.2	0.7	-		; I		0,0	7,0	0.4	0,5) () () ()	0.2	0,4	0,5	e, 0	0,0	0,0
	z z	7,8 3,0	2,6	2,0	13,7	4,0	2, 8,0,		 5 rc	, [8,0	6.7 - 4	1,1	2,0	0,0	, v o, c	, — 	6,0	3,2	2,0	7,0	7,1
бъему, %	С ₆ Н ₁₈ и более тяжелые	0,3 0,1	0,1			0	2,0		0,0	0,0	0,3	0	7,0	0,1	0	- -	0,1	0,1	0,1	1	0,4	-
Состав газа по объему,	C4H10	0,9	0,3	,00	0,0	0,1	2,00		4,0	* C.O	6,0	0		, (O	0,1	0,0	0,0	0,1	8,0	0,7	0,2	
Состав	C,H,s	1,9	8,0		0.1	0,1	0,4	,	.,. .,.	0,0	2,3	0,1	0,0 0,7	0,4	0,1	o	o	0,4		1,2	0,7	
	C,H,	3,8	2,0	်တွင် သိတိုင်	2,0	(O)	0,7		ည် င	ა დ თ —	5,3 (8,	က်	0,0	. 8,	4,0), ·	., c.	3,2	2,4	2,6	9,6	0,1
	,HO	84,5 91,9	93,8	91.2	85. 85.	6,86	95,6 98,5	(92.8 8,6	94.1	81,7	97,1	ა გ. გ.	94,0	98,2	96,1	2,00	94,9	91,9	93,2	93,8	98,4
	Газопровод	Саратов—Москва Саратов—Горький	Ставрополь—Москва 1-я нитка 2-я нитка	2-x hulka 3-x hulka	Серпухов—Ленинград Гоголево—Полтава	Дашава—Киев	Рудки—Минск—Вильнюс Угерско—Львов, Угерско—Гнездичи—	Киев	Брянск—Москва	Пебелинка—Днепропетровск Пебелинка—Брянск—Москва	Кумертау—Ишимбай—Магнитогорск	Промысловка—Астрахань	Тээли— Коган	Джарлал— гашлент Газли— Коган— Ташкент	Ставрополь—Невинномысск—Грозный	Саушино—Лог—Волгоград	Корооки—Лог—Болгоград	Byxana—Ypan	Урицк—Сторожовка	Линево-Кологривовка-Вольск	Средняя Азия—Центр	Уренгой-Помары-Ужгород

топлив
жидких
Z
и твердых
некоторых
характеристики
Расчетные
7
2
Таблица

	88			ocras p	забочей	Состав рабочей массы топлива	топли	ва, %		ETOI	Макси- мальные	I-	Темпе плав золь	Температура плавкости золы, °C		Приведен- ные	PH XI	% A:
Бассейн, месторождение	Марка топлин	Класс	dAn	AP	у+qo ⁸	$c_{\mathbf{p}}$	HP	Q. X	o o	плет вышенН q сгорания QН ля/жДМ	Мукс, %	зольность Авис, %	7,	t _s t _s	влаж- ность W ^П , кг.10 ² МДж	ж- гь ность , Ап, мдж	неутэв дохыа	горючую масс
Донецкий	Дı-	<u>Ф</u> Ф	0,8 0	23,0 23,0	3,5 0,8 0,8	49,3 55,2	6 6 6 6 6 6 6 6	0,10	8,7° 6,8°	19,59 22,02 94,90		31,5	1000 12	1200 1280 1200 1280 1200 1280	280 0,664 280 0,363 250 0,363			44,0
Кузнецкий Томусинские, Јерниговский уг-	, π <u>ο</u> ς Σ	ď		13,2	0,3 6,0 4,	58,7 59,1	. 4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2,1,9			13,5		130	200 1250 1200 1250 1270 1300	1250 0,526 1300 0,532	26 0,578 26 0,578 32 0,837		000
× 2 ×	N¥20C	~~~~ <u>~</u>	7,0 32,0 5,5 6,0	38,1 25,2 23,6 31,0	0,8 2,7 0,8 6,1	43,4 28,7 59,6 48,5	2,2,5,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0,8 0,6 0,3 0,8	7,0 8,6 4,0 4,0	16,75 10,42- 23,65 19,68	7,5	44,0 45,0 32,0 40,0	1300 15 1350 15 1140 12 1200 14	1500 1500 1500 1500 1200 1250 1450 1500	1500 0,418 1500 3,071 1250 0,232 1500 0,305	2,275 71 2,418 32 0,998 0,1,575		30,0 50,0 33,0 42,0
Челябинский Ирша-Бородин-	53 52	X, P P	18,0 33,0	29,5	1,0	37,3 43,7	3,0	0,9 0,6	10,5 13,5	13,94 15,66	36,0	45,0 1 15,0 1	1150 1250 1300 1180 1210 1230	250 13 210 12	00 1,291 30 2,107			45,0 48,0
жое Сучанский Артемовское	T B3	P, A,	5,0 24,0	22,8 24,3	0,5	64,6 35,7	2,9	0,8	3,4	24,24 13,31	30,0	33,0 36,0	1100 1250 1280 1130 1300 1320	250 12 300 13	80 0,206 20 1,803	0,940 03 1,825		19,0 50,0
Сланец ЭССР		Meg-	13,0	40,0	2,6	24,1	3,1	0,1	3,7	10,93		 	1300	300 1400 1430	30 1,189	89 3,660		0,06
Торф	1	жий Фре- зер-	50,0	6,3	0,1	24,7	2,6	1,1	15,2	8,12	55,0	23,0	1010 1150 1200	150 12	00 6,160	60 0,776		0,07
Мазут	Мал	ный Малосер- нистый	3,0	0,05	0,3	84,65	11,7	0,3	3	40,28			<u> </u>					l
	Серн	Сернистый Высоко-	3,0	0,1	1,4	83,80 83,00	11,2	0,5	7.	39,73 38,77		11	1 1		 	11		
													-	-	-	-	-	

одном значении α . 110 данным таолицы строится на миллиметровой оумаге график зависимости энтальпии продуктов сгорания от температуры θ ($I-\theta$ диаграмму). При построении $I-\theta$ диаграммы рекомендуется выбирать следующие масштабы: для температуры θ (ось абсцисс) -100^{0} C -1см для энтальпии I (ось ординат) -1000 кДж/кг -1см

4.3 Тепловой баланс парогенератора или водогрейного котла.

Тепловой баланс парогенератора или водогрейного котла составляется на 1 кг твердого или жидкого топлива или на 1 м 3 газообразного топлива для установившегося режима работы агрегата

$$Q_{P}^{P} = Q_{1} + Q_{2} + Q_{3} + Q_{4} + Q_{5} + Q_{6}$$
 кДж/кг (кДж/м³) Или

$$q_1 + q_2 + q_3 + q_4 + q_5 + q_6 = 100\%,$$

где Q^P_P – располагаемое тепло топлива кДж/кг (кДж/м³) Q_1 - полезно использованное тепло, пошедшее на получение пара или горячей воды, кДж/кг (кДж/м³)

 $q_1 = \frac{Q_1}{Q_P^P} \cdot 100 \text{ (\%)}$

 Q_2 – потери тепла с уходящими дымовыми газами, кДж/кг (кДж/м 3)

$$q_2 = \frac{Q_2}{Q_p^P} \cdot 100 \text{ (\%)}$$

U₃- потери тепла от химической неполноты сгорания топлива, кДж/кг (кДж/м^{*})

$$q_3 = \frac{Q_3}{Q_p^P} \cdot 100 \text{ (\%)}$$

О₄ – потери тепла от механической неполноты сгорания топлива, кДж/кг

$$q_4 = \frac{Q_4}{Q_P^P} \cdot 100 \text{ (\%)}$$

 Q_5 – потери тепла в окружающую среду, кДж/кг (кДж/м³)

$$q_5 = \frac{Q_5}{Q_p^P} \cdot 100 \text{ (\%)}$$

 Q_6 – потери тепла с физическим теплом шлаков, удаленных из топки, кДж/кг

$$q_6 = \frac{Q_5}{Q_p^P} \cdot 100 \text{ (\%)}$$

При сжигании жидкого и газообразного топлива потери тепла Q_4 и Q_6 отсутствуют.

В курсовом проекте принять:

- а) для твердого и жидкого топлива $Q_P^P = Q_H^P$, кДж/кг
- б) для газообразного топлива $Q_{P}^{P} = Q_{H}^{C}$, кДж/м³

Определяется потеря тепла с уходящими газами:

$$q_2 = \frac{Q_2}{Q_P^P} \cdot 100 = \frac{I_{yx} - \alpha_{yx} \cdot I_{xe}^0}{Q_P^P} \cdot (100 - q_4), \%$$

Где I_{yx} – энтальпия уходящих газов – определяется по $I-\theta$ диаграмме при температуре уходящих газов θ_{yx} и α_{yx} ;

 θ_{vr} – определяется по табл.1.1 (см Приложение)

 I_{xe}^{0} – энтальпия холодного воздуха $I_{xe}^{0} = V_{B}^{0}$ (С θ) $_{xe}$

Температура холодного воздуха θ_{xg} принять 30° С, соответственно, энтальпия 1 м³ холодного воздуха составляет: (С θ) $_{xg} = 39.8$ кДж/м³

 $\alpha_{\nu x}$ – коэффициент избытка воздуха на выходе из котлоагрегата,

 q_3 , q_4 – определяются по таблице 4.1-4.4 (Л-1)

 ${
m q}_5$ – определяется по таблице 4.5-4.6 (Л-1)

Потери q₆ определяются по формуле

$$q_6 = \frac{a_{\text{III}} \cdot (C\theta)_{uu} \cdot A^P}{Q^P_P} \quad (\%),$$

где $a_{\text{шл}}$ – доля золы топлива в шлаке, принимается равной $a_{\text{шл}} = 1 - a_{\text{ун}};$

 $(C\theta)_{uu}$ – энтальпия шлаков.

Энтальпия шлаков при сухом шлакоудалении принимается $t = 600^{0}$ C и $(C\theta)_{\mu\nu} = 560 \text{ кДж/кг}.$

В случае жидкого шлакоудаления определяется плавкостью шлака и принимается в расчетах $t^*_{\text{пил}} = t_3 + 100^0 \text{C}$

t ^ж шл	⁰ C	1300	1400	1500	1600
(С 0) _{шл}	кДж/кг	1360	1580	1760	1870

При камерном сжигании топлив (твердых) в топках с жидким шлакоудалением q_6 учитывается только при

$$A^{P} \ge \frac{Q^{P}_{H}}{100}$$
 (%)

- Котельные установки и их оослуживание. Деев Л.В., ьалахничев Н.А. М.: Высшая школа, 1989
- 6. Паровые и водогрейные котлы. Справочное пособие. Зыков А.К. М. Энергоатомиздат, 1987
- 7. Конструкция и расчет котлов и котельных установок. Двойнишников В.А. М.: Машиностроение, 1988
- 8. Котельные установки. Щеголев М.М., Гусев Ю.Л., Иванова М.С. М.: Стройиздат, 1966

Требования при защите курсового проекта.

На защиту проекта предъявляется: расчетно-пояснительная записка и чертежи котла.

Студент должен знать конструкцию в целом, конструктивные особенности поверхностей нагрева и отдельных узлов.

При использовании справочной и нормативной информации дается точная ссылка на литературный источник и обосновывается выбор той или иной величины.

Защита курсовой работы принимается преподавателем. Студентом готовится сообщение (доклад) на 5...8 мин, в котором указываются:

- тип котла и вид топлива, принятые к расчету;
- характеристика конструкции котла;
- краткая характеристика выполненной работы;
- характеристика разработанной конструкции экономайзера или воздухоподогревателя;
 - основные результаты расчетов.

По окончании сообщения студенту задаются вопросы в объеме вопросов, затронутых при выполнении курсовой работы.

Общий перечень рекомендуемой литературы

Основная

Л-1: Р.И. Эстеркин Котельные установки. Курсовое и дипломное проектирование, Л.: Энергоатомиздат, 1989

Л-2: Р.И. Эстеркин Промышленные котельные установки,

Л.: Энергоатомиздат, 1985

Л-3: К.Ф. Роддатис, А.Н. Полтарецкий «Справочник по котельным установкам малой производительности», М.: Энергоатомиздат, 1989г.

Л-4: Ривкин «Термодинамические таблицы воды и водяного пара»,

М.: Энергоатомиздат, 1984г.

Дополнительная

- 1. Тепловой расчет котельных агрегатов (нормативный метод)/ под ред. Н.В. Кузнецова и др. – М.: Энергия, 1973
- 2. Аэродинамический расчет котельных установок, Нормативный метод / Под ред. С.И. Мочана – Л.: Энергия, 1977
- 3. Правила устройства и безопасной эксплуатации паровых и водогрейных котлов (ПБ 10-574-03) / Госгортехнадзор России – М.: НТЦ «Промышленная безопасность», 2003
- Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 03-576-03). - / Госгортехнадзор России – М.: НТЦ «Промышленная безопасность», 2003

$$\eta^{6p}_{K.a.} = \frac{Q_1}{Q_P^P} \cdot 100 \text{ (\%)}$$

$$\eta^{6p}_{\text{k.a.}} = 100 - \sum q \ (\%)$$

 $\eta^{6p}_{~\kappa.a.}=100~\text{-}\sum q~(\%)$ $\eta^{6p}_{~\kappa.a}$ — дает оценку превращения химической энергии топлива в тепло пара или горячей воды.

Определяется количество тепла, полезно отданного в котлоагрегата или водогрейном котле:

$$Q_{\kappa.a.} = D[(h_{\pi.\pi}. - h_{\pi.B}) + \frac{P}{100} (h_{\kappa B}. - h_{\pi.B})], \kappa B \tau$$

где $h_{n,n}$ – энтальпия перегретого пара кДж/кг, определяется по температуре и давлению из табл. 3.2 (Л-3)

 $h_{_{\Pi,B}}$ — энтальпия питательной воды кДж/кг, $h_{_{\Pi,B}} = t_{_{\Pi,B}} \cdot c_{_{\Pi,B}}$, $c_{_{\Pi,B}} = 4,19$ кДж/ кг \cdot град

Р – процент продувки, %

 $h_{\kappa B}$ — энтальпия котловой воды в барабане котла, $\kappa \Delta m / \kappa \Gamma$ — определяется по давлению: Л-4

D – Паропроизводительность, кг/с – из данных

$$Q_{\scriptscriptstyle BK} = G_{\scriptscriptstyle B}(h_{\scriptscriptstyle \Gamma.B.} - h_{\scriptscriptstyle X..B}), \, \kappa B_{\scriptscriptstyle T},$$

где $G_{\rm r}$ – расход воды через водогрейный котел, кг/с

 $h_{\text{г.в.}}$, $h_{\text{х.в}}$ – энтальпия горячей и холодной воды (на выходе и входе в водогрейный котел, кДж/кг). Определение расчетного расхода топлива является основной целью составления теплового баланса.

Действительный расход топлива, подаваемого в топку парового или водогрейного котла, определяется из уравнения прямого теплового баланса:

$$B_{\text{K.a.}} = \frac{Q_{\text{K.a.}}}{Q^{P}_{P} \cdot \eta^{\delta p}_{\text{K.a}}} \cdot 100, \text{ kg/c (m}^{3}/\text{c})$$

$$B_{B.K.} = \frac{Q_{B.K.}}{Q_{P}^{P} \cdot \eta_{B.K}^{\delta p}} \cdot 100, \text{ kg/c (m}^{3}/c)$$

Расчетный расход топлива: для твердого топлива $B_p = B_{n.r.}$ (1 - q_4 : 100), кг/сек Для газа и мазута $B_{n} = B_{n,r}$

Коэффициент сохранения теплоты: $\varphi = 1 - q_5 : 100$

4.4 Расчет теплообмена в топке и размеров топочной камеры

4.4.1 Определение объема камерной топки, он должен соответствовать объему, указанному в паспортных данных

$$V_m = \frac{B \cdot Q^P_H}{q_V}, M^3$$

q_v – удельная нагрузка топочного объема

4.4.2 Определение объема слоевой топки

$$V_m = \frac{B \cdot Q^P_H}{q_R}, M^3$$

Длина колосниковой решетки

$$b = \frac{R_{3\Gamma}}{a}$$
, M

a — ширина котла в свету, брать по чертежу Высота топочной камеры

$$h = \frac{V_m}{R_{3\Gamma}}, M$$

- 4.4.3 Расчет теплообмена в топке производится с целью определения температуры газов на выходе из топки – θ''_{m}
- 4.4.4 Во избежание шлакования при сжигании твердых топлив полученная температура должна быть на 50-70 °C ниже температуры начала деформации золы, т.е. $\theta''_m < t_1 - (50 \div 70)^{\,0}$ С

Полезное тепловыделение в топке рассматриваем при адиабатном процессе и определяем теоретическую теплоту:

$$\mathbf{Q}_{\it m} = \mathbf{I}_{\it m} = \mathbf{Q}^{\rm P}_{\rm H} \cdot \frac{100 - q_3 - q_4 - q_5 - q_6}{100} + \mathbf{Q}_{\it e}$$
, кДж/кг (кДж/м³),

где Q_{g} – тепло, внесенное в топку с горячим или холодным воздухом

$$Q_{\varepsilon} = \alpha_m \cdot V^{\circ} \cdot C_{\varepsilon} \cdot t_{\varepsilon}, \quad \kappa Дж/к\Gamma$$

 $t_{\rm g}$ – температура воздуха, поступающего в топку – берется из характеристики котла, если имеется воздухоподогреватель, при отсутствии воздухоподогревателя принимается 25-30°C

$$C_e \approx 1,3 \text{ кДж/м}^3 \cdot \text{град}$$

По I_m методом интерполяции находим теоретическую температуру (см. формулу (II) раздел 4.2)

Зная полезное тепловыделение в топке, находим по таблице 2 расчета теоретическую температуру газов в топке θ_a или по $I - \theta$ диаграмме При поверочном тепловом расчете лучевоспринимающая поверхность нагрева (H_P) задана, а определению подлежит температура газов на выходе из топки θ''_m Расчет теплообмена в топке ведем графически по номограмме стр. 147 (Л-1), стр.54 (Л-2)

Находим степень экранирования топки Х:

a) слоевой
$$X = \frac{H_P}{Fcr - R_{3\Gamma}}$$

 $-R_{_{3\Gamma}} = 15,5 \text{ m}^2$ $-R_{_{3\Gamma}} = 19,5 \text{ m}^2$ Топки с чешуйчатой цепной решеткой: ТЧ – 2,7/6,5

TH - 2.7/80

TH - 3.07/5.6

Топки с пневматическим забрасывателями и цепной решеткой обратного хода:

$$TJI3 - 2,7/3,0$$
 $-R_{3\Gamma} = 6,4 \text{ m}^2$
 $TJI3 - 2,7/4,0$ $-R_{3\Gamma} = 9,1 \text{ m}^2$
 $TY3 - 2,7/5,6$ $-R_{3\Gamma} = 13,4 \text{ m}^2$

Выбрав подходящий по характеристике вентилятор, выписывают его производительность, напор, число оборотов, кпд. После этого приступают к определению потребляемой мощности и подбору электродвигателя.

Мощность, потребляемая вентилятором:
$$N_{_{\rm B}} = \frac{V_{_{\rm B}}S_{_{\rm BT}} \cdot 1{,}1}{102 \cdot 3600h_{_{\rm B}} \cdot h_{_{\rm D,II}}}$$
, кВт

 Γ де S_{RT} - полный напор, развиваемый вентилятором, мм вод. ст., Π а При наличии ременной передачи $\eta_{\rm p,n}=0.95$. По мощности и числу оборотов электродвигатель выбирают по каталогу, откуда и выписывают его параметры.

5.4 Определяем производительность дымососа

$$V_{\pi} = 1.1 \text{B V}^{\text{yx}}_{\text{nc}} \left(\frac{t_{\text{nc}}^{\text{yx}} + 273}{273} \right) , \text{ m}^{3}/\text{y}$$

Марку дымососа по производительности и напору находим в Л-3. Выбрав подходящий по характеристике дымосос, выписывают его производительность, напор, число оборотов, кпд. Выписанный оттуда напор пересчитывают на действительный для горячего газа:

$$\mathbf{S}_{_{\mathrm{TT}}} = \mathbf{H}_{_{\mathrm{ДЫМ}}}^{_{\mathrm{KAT}}} \, rac{273 + 20}{273 + J_{_{\mathrm{TD}}}} \, ,$$
 мм.вод.ст., Па

Затем приступают к определению потребляемой мощности и подбору электродвигателя

5.5 Мощность, потребляемая дымососом (вентилятором), определяется по формуле:

$$N_{_{\mathrm{ДЫМ}}} = \frac{V_{_{\mathrm{ДЫM}}} S_{_{\mathrm{ДЫM}}} \cdot 1,1}{102 \cdot 3600 h_{_{\mathrm{ДЫM}}} \cdot h_{_{\mathrm{p.n.}}}}, \quad \text{kBT}$$

При наличии ременной передачи $\eta_{\text{р.п.}} = 0.95$. По мощности и числу оборотов электродвигатель выбирают по каталогу, откуда и выписывают его параметры.

7. Вывод

Полученные расчетные данные сводим в таблицу и сопоставляем с техническими характеристиками, взятыми из справочника и на основании этого делаем вывод по выполненным расчетам.

Наименование	Справочные данные	Расчетные данные
КПД,%		
Расход топлива на котел, кг/с		
Тип экономайзера		
Дымосос		
Вентилятор		

$$S_{\kappa}=A(\frac{D}{H\kappa}\alpha_{\kappa})^{2}$$
-В, [мм вод.ст.],[Па]

А=0.005 - коэффициент

В= 2 - коэффициент

Нк- площадь конвективной поверхности из характеристики котлов, [м²]

D- Паропроизводительность.[кг/ч]

$$\alpha_{\kappa_{\Pi}}^{I} = \alpha_{r} + \Delta \alpha_{\kappa_{\Pi}}^{I}$$

$$\alpha_{\kappa_{\Pi}}^{II} = \alpha_{\kappa_{\Pi}}^{I} + \Delta \alpha_{\kappa_{\Pi}}^{II}$$

Сопротивление пароперегревателя подсчитывают так же как и газоход котла.

 $S_{R,a}$ - сопротивление водяного экономайзера

$$S_{\text{в.э.}}$$
=0,5n $\frac{W_{\text{п.с.}}^2}{2}$ $\rho_{\text{п.с.}}$, $W_{\text{п.с.}}$ - скорость продуктов сгорания в водяном экономайзере[м/с],

n- число рядов труб, пересекаемых газовым потоком(Л-3 стр 317)

$$\rho_{\text{n.c}} = \frac{273}{273 + t_{\text{cp}}^{\text{nc}}} \rho_{\text{o}}, [\text{M}^3/\text{Kr}]$$

 ρ_{nc} - плотность продуктов сгорания, [м³/кг]

 $ho_{o}=1,34[\kappa r/m^{3}]$ - плотность при $t=0^{\circ}C$ и P=760 мм рт. ст. t^{rc}_{cp} - средняя температура продуктов сгорания в водяном экономайзере[$^{\circ}C$] (см расчет водяного экономайзера) $t_{cp}^{nc} = \Delta t_{B.3}$.

 $S_{\text{шиб}}$ – сопротивление шибера – 1-2 мм вод.ст.; 10-20 Па

 S_6 – сопротивление борова для приближенных расчетов в котлах малой и средней производительности можно принять:

без циклонных золоуловителей- 4-6 мм вод.ст., 40-60 Па

с циклонными золоуловителями – 10-15 мм вод.ст., 100-150 Па

 S_3 – сопротивление золоулавливателя –

для жалюзийного типа 40-60 мм вод.ст.. 400-600 Па

- для батарейного типа 60-70 мм вод.ст., 600-700 Па

 S_{TD} – сопротивление дымовой трубы -2-10 мм вод.ст., 20-100 Па

Расчет сопротивления воздухоподогревателя см. дополн. Л-8

5.3 Определяем производительность вентилятора

$$V_{\rm B} = 1.1 \, {\rm V}^{\rm o} \, \alpha_{\rm T} (\frac{t_{\rm B} + 273}{273}) \, , \, {\rm M}^{3}/{\rm q}$$

В – расход топлива, кг/ч, кг/с

 $t_{\rm R} = 30^{\rm o}{\rm C}$ – температура воздуха, подаваемого в топку по нормативному методу

По напору и производительности выбираем вентилятор(Л-3) и выписываем его характеристики.

$$1\,43 - 2, //6,5$$
 $- R_{3r} = 15,8 \text{ M}^{-}$
ТЛЗМ $- 1,87/3,0$ $- R_{3r} = 4,4 \text{ M}^{2}$
ТЛЗМ $- 2,7/3,0$ $- R_{3r} = 6,4 \text{ M}^{2}$

б) камерной
$$X = \frac{H_P}{F_{CT}}$$

Fcт – полная поверхность стен топки, м²

$$Fct = 6\sqrt[3]{V_m^2}$$

Коэффициент загрязнения топочных экранов

ζ - 0,65 – для газообразного топлива

 ζ - 0,55 - для мазута ζ - 0,6 - все виды топлива при слоевом сжигании

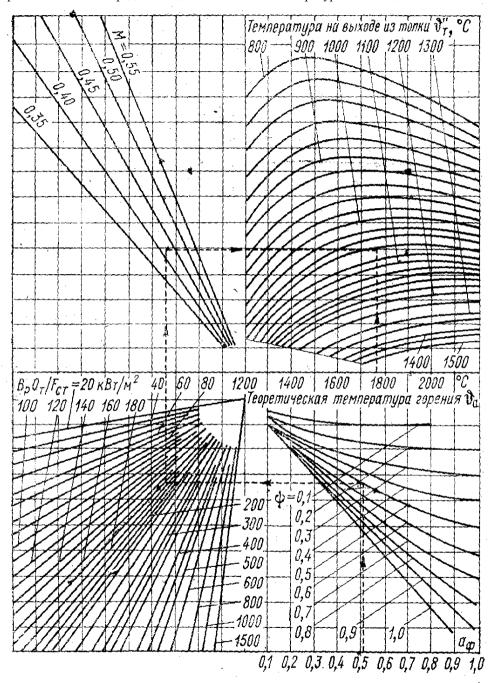
Коэффициент тепловой эффективности экранов $\psi = X \zeta$

Степень черноты факела можно принять: мазут – $a_{\rm th} = 0.45 - 0.8$

газ -
$$a_{\phi} = 0,4$$

твердое топливо - $a_{\rm d}$ = 0,45-0,7

Тепловыделение на 1 м² поверхности стен топки


$$\frac{BQ^{P}_{H}}{F_{cr}}$$
 , $\kappa Br/M^{2}$

Значение коэффициента «М» можно принять:

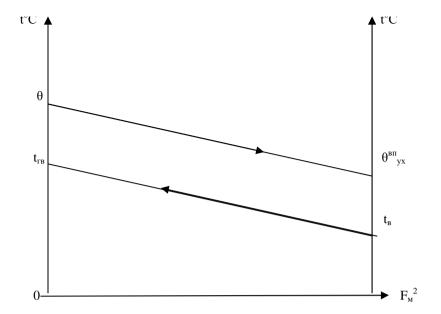
Для газа и мазута M = 0.49-0.53

Для твердых топлив M = 0.42-0.52

Находим по номограмме θ''_m – действительная температура на выходе из топочной камеры - стр 68 (Л-1) или см. Приложение 0.1

 $S_{воздухов}$ - сопротивление воздуховода 2-4 мм вод. ст, 20-40 Па, при наличии воздухоподогревателя следует учесть сопротивление по воздуху. Оно определятся по тому же методу как и у газового сопротивления.

Сопротивление топочных устройств для прохода воздуха


	Коэффициент	Сопротивление
	избытка	горелки или
Тип топочного устройства	воздуха на	решетки со
3 · 1 · 3 · 1 · · ·	выходе из	слоем топлива,
	топки	Па
Газовые и газомазутны	іе горелки	
Подовая горелка (щелевая)	1.1-1.15	200
Вертикальная щелевая горелка	1.1-1.15	175
ΓM-2,5	1.1	800
ΓM-4,5	1.1	900
ГМ-7	1.1	1100
ΓM-10	1.1	1600
ГМП-16 (сопротивление приведено по	1.1	4000
первичному воздуху)		
Γ M Γ -1,5 M , Γ M Γ -2 M , Γ M Γ -4 M , Γ M Γ -5 M	1.15	1200
ΡΓΜΓ-4	1.1	1000
РГМГ-6,5 и РГМГ-7	1.1	1800
РГМГ-10	1.1	1050
РГМГ-20	1.1	1500
РГМГ-30	1.1	2500
Топки для слоевого сж	кигания	
Топки с цепной решеткой (антрациты АМ и	1.5-1.6	1000
AC, $A^n = 0.5$)		
Топки с пневмомеханическими	1.3-1.4	500
забрасывателями и решеткой обратного хода		
Топки скоростного горения для сжигания:		
Рубленой щепы, $W^P = 50\%$	1.2	700
Дробленых отходов и опилок, $W^P = 50\%$	1.3	1000

5.2 Сопротивление котельной установки складывается из сопротивления топки котла, пароперегревателя, водяного экономайзера, воздухоподогревателя, заслонки, регулирующей тягу, борова, золоуловителя и дымовой трубы с запасом 20%.

 $S_{\text{г.т.}}=1,2(S_{\text{T}}+S_{\text{K}}+S_{\text{III}}+S_{\text{B.S.}}+S_{\text{B.II.}}+S_{\text{III}}+S_{\text{6}}+S_{\text{5}}+S_{\text{7p}})$ [MM вод.ст.],[Па]

 $S_{\scriptscriptstyle T}$ -сопротивление топки – 2-3мм вод.ст., 20-30 Па (разрежение)

 S_{κ^-} сопротивление конвективной поверхности для вертикально-водотрубных котлов в приближенном расчете определяем по эмпирической формуле

4.8.3 Живое сечение воздухоподогревателя для прохода продуктов сгорания:

$$f_{\text{xc}} = \frac{BV_{r}(273 + \theta_{cp})}{273 \cdot W_{-}}, \, \text{m}^{2}$$

$$\theta_{\rm cp} = \frac{\theta + \theta_{\rm yx}^{\scriptscriptstyle {\rm BR}}}{2}$$
 , °C – средняя температура продуктов сгорания в

воздухоподогревателе.

 $W_{\scriptscriptstyle \Gamma}$ — скорость продуктов сгорания в воздухоподогревателе, $W_{\scriptscriptstyle \Gamma}$ = 12÷16 м/с 3ная $H_{\scriptscriptstyle BR}$ и $f_{\scriptscriptstyle жc}$ подбирается воздухоподогреватель.

4.8.4 Экономический эффект от установки воздухоподогревателя:

$$q' = \alpha T V^{o} C_{\scriptscriptstyle B}(t_{\scriptscriptstyle \Gamma B} \cdot t_{\scriptscriptstyle B}), \, \kappa Дж/к \Gamma$$

$$q = \frac{q_{_{B\Pi}}}{Q_{_H}^P} \cdot 100\%$$

При сжигании жидкого и газообразного топлива необходимо подобрать форсунки или горелки.

5. Аэродинамический расчет газовоздушного тракта (приближенный)

5.1 Определяем сопротивление воздушного тракта:

 $S_{BT} = S + S_{BO3JJVXOB}$ [мм вод. ст.], [Па]

S - сопротивление колосниковой решетки или учитываем тип горелки (Характеристика топочного устройства)

Расчет пароперегревателя может быть поверочным или конструктивным. Конструктивный расчет выполняется при создании новых паровых котлов в конструкторских бюро заводов-изготовителей.

При проектировании и эксплуатации котельных установок чаще всего приходиться выполнять поверочный расчет пароперегревателя.

Последовательность расчета пароперегревателя зависит от расположения его в газовом тракте котельного агрегата, способа регулирования температуры перегрева пара и схемы включения регулятора перегрева.

Последовательность расчета конвективного пароперегревателя.

4.5.1 Принимается диаметр труб пароперегревателя, d_н, м; относительный,

продольный и поперечный шаги труб, $\frac{S_1}{d}$, $\frac{S_2}{d}$ (табл. 8.13-8.12 Л- 3)

4.5.2 Принимается расположение труб (шахматное или коридорное)

4.5.3 Вычисляется расчетная скорость пара в змеевиках пароперегревателя

$$W_n = \frac{\Pi \cdot V_{cp}}{f}$$
, м/сек

где Д – расход пара, кг/с, из марки котла;

 V_{cp} – средний удельный объем пара, табл.3.1 Л-1

f – площадь живого сечения для прохода пара, м²

$$f = z_1 \cdot \frac{pd_{\text{BH}}^2}{4}$$

d_{вн} – внутренний диаметр трубы, м

 z_1 – число параллельно включенных змеевиков, шт – выбирается с целью получения скоростей пара 15-25 м/сек (для надежного охлаждения трубок пароперегревателя)

4.5.4 Количество тепла, воспринятое паром:

$$Q_{\text{пп}} = \prod_{i=1}^{n} (h_{\text{пп}} - h_{\text{нп}}) + \prod_{i=1}^{n} (1-x) \cdot u, \text{ кВт}$$

 h_{nn} – энтальпия перегретого пара, определяется по табл 3.2 Л-3

 $h_{\mbox{\tiny HII}}$ – энтальпия насыщенного пара, табл. 3.1 Л-3

x – степень сухости пара, x= 0,97÷0,98

ч – теплота парообразования – табл. 3.1 Л-3

4.5.5 Тепло, переданное в пароперегревателе на 1 кг топлива

$$Q_6 = rac{ extbf{Q}_{ ext{np}}}{B_2}$$
, кДЖ/кг (кДж/сек)

4.5.6 Теплота, отданная продуктами сгорания пару:

$$Q_{\delta} = \varphi(I'_{nn} - I''_{nn} + \Delta\alpha_{nn} \cdot I^{o}_{xB})$$

Из этой формулы определяем энтальпию продуктов сгорания за пароперегревателем:

$$I''_{\Pi\Pi} = I''_{\Pi\Pi} + \Delta \alpha_{\Pi\Pi} \cdot I^{\circ}_{_{XB}} - rac{ ext{Q}_{6}}{ extbf{\emph{j}}} \ , \ \kappa ext{Дж/кг} \ (\kappa ext{Дж/м}^{3})$$

- 4.5./ 1 емпература газов за пароперегревателем определяется по $I-\theta$ диаграмме по величине I''_{nn} θ''_{nn} , ${}^{o}C$ или методом интерполяции (см формулу (I),(II) раздел 4.2
- 4.5.8 Средняя температура дымовых газов:

$$q_{\rm cp}^{\rm nn} = \frac{q_{\rm nn}^{'} + q_{\rm nn}^{''}}{2}$$
,°C

где $\theta'_{\text{пп}} = \theta''_{\text{т}}$, определяемая из расчета топки.

4.5.9 Средний секундный расход дымовых газов

$$V_{c} = B_{p} \cdot V_{,rr} \cdot \frac{q_{cp}^{,rrr} + 273}{273}$$
, м³/сек (кг/сек)

- 4.5.10 Живое сечение для прохода дымовых газов, M^2
- при поперечном омывании гладких труб $F_2 = ab z_1 \ell d_{\scriptscriptstyle H}$,
- при продольном омывании гладких труб $\, {
 m F_2} = {
 m ab} {
 m z_1} \frac{{\it pd}^{\,2}}{4} \, \ell {
 m d_{\scriptscriptstyle H}} \,$

где а – ширина газохода, м

b – высота газохода, м

 ℓ - длина трубы, м, равная b

 $d_{\rm H}$ – наружный диаметр, м

4.5.11 Средняя скорость дымовых газов:

$$w_{\text{Al}} = \frac{V_{\text{c}}}{F_2}, \text{ M/c}$$

- 4.5.12 Коэффициент теплоотдачи конвекции от газов к поверхности нагрева α ..:
- при поперечном омывании коридорных и шахматных пучков и ширм $\alpha_\kappa = \alpha_{\scriptscriptstyle H} c_z c_S c_b \ \, , \ \, B \text{T/M}^2 \cdot \kappa$
- при продольном омывании

$$\alpha_{\kappa} = \alpha_{\rm H} c_{\rm \phi} c_{\ell}$$
 , BT/M²·K

4.5.13 Коэффициент теплоотдачи от поверхности нагрева к пару

$$\alpha_2 = \alpha_{\rm H} c_{\alpha}$$
, BT/M²·K

- $\alpha_{\rm H}$ коэффициент теплоотдачи излучением определяется по номограмме на рис. 6.8 Л-1 по средним значениям скорости, давления и температуры пара пароперегревателя(в зависимости от расположения труб шахматное или коридорное)
- 4.5.14 Коэффициент загрязнения ε , м² к/Вт
- для пароперегревателей с коридорным и шахматным расположением труб при сжигании жидких топлив принимается $\epsilon = 0{,}00257$
- для пароперегревателей с коридорным расположением труб при сжигании твердых топлив принимается $\epsilon = 0{,}0043$
- 4.5.15 Вычислить температуру стенки труб пароперегревателя, принимаемую равной при сжигании твердого и жидкого топлива температуре наружного слоя золовых отложений на трубах

4.8 Расчет воздушного подогревателя.

4.8.1 Из уравнений теплового баланса воздухоподогревателя проверяем температуру горячего воздуха на выходе из подогревателя:

$$\phi B(I_2 + I_R - I_{VX}) = V_{\pi} C_R(t_{\Gamma R} - t_R), \, \kappa Дж/к\Gamma$$

 $V_{\rm д} = \alpha_{\rm вп} \cdot V^{\rm o}, \, {\rm M}^{\rm 3}/{\rm кr} \, ({\rm M}^{\rm 3}/{\rm M}^{\rm 3})$ — действительный объем воздуха, подаваемый в топку.

 $t_{{}_{\!{\scriptscriptstyle {\rm TB}}}}$ – температура воздуха на выходе из воздухоподогревателя;

 $t_{\mbox{\tiny B}}$ – температура воздуха на входе в воздухоподогреватель:

маловлажное топливо - $t_{\rm B} = 30^{\rm o}{\rm C}$

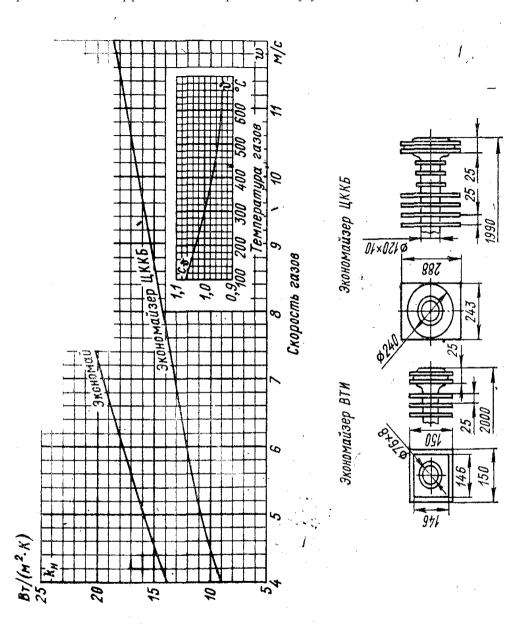
влажное топливо $-t_{\rm B} = 40 \div 50^{\rm o}{\rm C}$

многовлажное топливо $-t_B = 50 \div 65^{\circ} \text{C}$

 $I_{_B}=C_{_B}(\alpha_{_{B\Pi}}$ - $\alpha)$ V^{o} $t_{_{XB}}$ – тепло, внесенное в газоход с присасываемым воздухом I_2 , $I_{_{YX}}$ – энтальпия продуктов сгорания - определяется по температурам на выходе и входе по табл.3.5 или по $I-\theta$ диаграмме.

 $C_{\rm B} - 1,34 -$ теплоемкость.

Если полученная искомая t_{r_B} будет отличаться от заданной более чем на 100 °C, то следует сделать перерасчет.


4.8.2 Поверхность нагрева воздухоподогревателя.

$$H_{\text{BII}} = \frac{BV_{\text{A}}C_{\text{B}}(t_{\text{FB}} - t_{\text{B}})10^{3}}{K_{\text{BII}} \cdot \Delta t_{\text{BII}}}, \text{M}^{2}$$

Коэффициент теплопередачи для воздухоподогревателя можно принять $K_{\text{вп}}=18\div25,\, \text{Вт/м}^2\cdot\text{град}$

Средняя температура в воздухоподогревателе:

$$\Delta t_{\rm BII} = \frac{\Delta t_{\rm g} oC + \Delta t_{\rm m}}{2} \cdot C$$

$$t_3 = t^{cp}_{mn} + (\varepsilon + \frac{1}{a_2}) \cdot \frac{B_p \cdot Q_6}{H}, ^{o}C$$

где t^{cp}_{nn} – среднеарифметическое значение температуры пара

$$t^{cp}_{nn} = \frac{t_{hac} + t_{nn}}{2}$$
, °C

Н – поверхность нагрева, ей предварительно задаются из характеристик котла (по табл. $8.13 \div 8.25 \text{ Л}-3$), м²

- при сжигании газообразного топлива $t_3 = t^{cp}_{\ \ nn} 25, \, ^{o}C$
 - 4.5.16 Эффективная толщина излучающего слоя

$$S = 0.9 \cdot (\frac{4}{p} \cdot \frac{S_1 \cdot S_2}{d_{H}^2} - 1),_{M}$$

 Где S_1 и S_2 – продольный и поперечный шаги труб в пучке, м (из характеристики котла)

- 4.5.17 Суммарная поглощательная способность газа u_{π} . S, где u_{π} – общая объемная доля трехатомных газов и водяных паров (из табл 1 расчета)
- 4.5.18 Коэффициент ослабления лучей трехатомными газами определяется по номограмме (рис 5.4 Л-1) - к
- 4.5.19 Коэффициент теплоотдачи излучением:
- для запыленного потока (при сжигании твердых топлив) $\alpha_{\scriptscriptstyle \Pi} = \alpha_{\scriptscriptstyle H} \cdot a$
- для незапыленного потока (при сжигании жидкого и газообразного топлива) $\alpha_{\text{\tiny T}} = \alpha_{\text{\tiny H}} \cdot c_{\text{\tiny T}} \cdot a$
- ан коэффициент теплоотдачи излучением, определяется из номограммы (рис. 6.4 Л-1)
- c_r поправка, вводимая при отсутствии золовых частиц в продуктах сгорания; а – степень черноты продуктов сгорания (рис. 5.6 Л-1)
- 4.5.20 Коэффициент использования Е (для поперечно омываемых пучков труб конвективных пароперегревателей, принимается $\xi = 1$)
- 4.5.21 Коэффициент теплоотдачи от продуктов сгорания к стенке труб пароперегревателя

$$\alpha_1 = \xi (\alpha_{\kappa} + \alpha_{\pi}), B_T/M^2 \cdot \kappa$$

Коэффициент теплопередачи:

$$K = \frac{\boldsymbol{j} \cdot \boldsymbol{a}_1}{1 + \frac{\boldsymbol{a}_1}{\boldsymbol{a}_2}}, B_{\text{T/M}^2} \cdot \kappa$$

где ф – коэффициент тепловой эффективности:

- при коридорном расположении труб и сжигании твердых топлив определяется из таблицы 6.1 Л-1
- при сжигании газа принимается $\phi = 0.85$
- при сжигании мазута с $\alpha_T > 1.03$ ф определяется из таблицы 6.2 Л-1

4.5.23 Средний температурный напор

$$\Delta t = \frac{\Delta t_{\delta} - \Delta t_{M}}{2.3 \lg \frac{\Delta t_{\delta}}{\Delta t_{M}}}, ^{\circ}C$$

где $\Delta t_{\delta} = \theta'_{\Pi\Pi} - t_{\Pi\Pi}, {}^{o}C;$ $\Delta t_{M} = \theta''_{\Pi\Pi} - t_{Hac}, {}^{o}C;$

если
$$\frac{\Delta t_{\rm G}}{\Delta t_{\rm m}} \leq$$
 1,7, то $\Delta {
m t} = \frac{\Delta t_{\rm G} + \Delta t_{\rm m}}{2}$,°C

4.5.24 Определяется количество теплоты, воспринятое пароперегревателем

$$Q_{\scriptscriptstyle \mathrm{T}} = rac{\kappa H \Delta t}{B_{\scriptscriptstyle \mathrm{p}} \cdot 10^3}, \, \kappa Дж/к \Gamma \, (\kappa Дж/m^3)$$

- 4.5.25 Невязка: $\frac{Q_{_{6}}-Q_{_{\mathrm{T}}}}{Q_{_{6}}}\cdot 100 \leq 2\%$
- 4.5.26 Поверхность нагрева 1 погонного метра трубы: $h = \pi d_{H}$, м
- 4.5.27 Общая длина труб пароперегревателя $\mathbf{l} = \frac{H}{h}$, м
- 4.5.28 Длина одного змеевика $\mathbf{l}_{_{3M}} = \frac{\mathbf{l}}{\mathbf{z}_{_1}}$

где в – высота газохода пароперегревателя, м

4.6 Расчет конвективных поверхностей нагрева

Цель: определить температуру газов на выходе из первого и второго котельных пучков и водяного экономайзера.

1. Определяем конвективную поверхность нагрева для первого котельного пучка. Для этого необходимо решить два уравнения теплопередачи относительно двух температур, характерных для первого котельного пучка.

ф - коэффициент сохранения тепла

$$\varphi = 1 - \frac{q_5}{100}$$

B – расход топлива на котел, кг/с (M^3/c)

Н₁ – поверхность нагрева котельного пучка

$$H_{1_{K.\Pi.}} = H_{\kappa} \cdot \frac{2}{3}$$
 , M^2

Если
$$\frac{\Delta t_{\rm g}}{\Delta t_{\rm m}} \le 1,7$$
 , то Δ t $_{\rm b.3.} = \frac{\Delta t_{\rm g} - \Delta t_{\rm m}}{2}$,

 $\Delta t_{\rm f}$ и $\Delta t_{\rm m}$ – большая и меньшая разности температур продуктов сгорания и температуры нагреваемой среды, ${}^{\rm o}C$

к вэ – коэффициент теплопередачи водяного экономайзера.

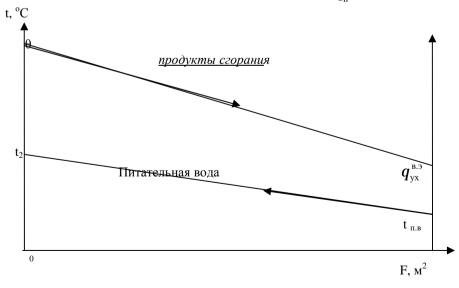
а) Для стальных водяных экономайзеров

$$\kappa_{B3} = \frac{a_{\pi} + Wa_{\kappa}}{1 + X(a_{\pi} + Wa_{\kappa})}$$
, [Вт/м²град]

Определяется по номограмме как для конвективной поверхности.

 $\kappa_{\rm H}$, с $_{\rm v_-}$ по номограмме (см приложение № 6 или Л2 – стр 276)

Скорость продуктов сгорания $w_{R3} = 6-12 \text{ м/c}$


Определяем живое сечение для продуктов сгорания для водяного экономайзера

$$f_{xc} = \frac{B \cdot V_{r}(273 + q'_{cp})}{w_{b.s.} \cdot 273}, [M^{2}] \qquad \theta'_{cp} = \frac{q_{k.ii.} + q_{yx}^{B9}}{2}, C^{o}$$

По найденным значениям K $_{\rm в \scriptscriptstyle B}$ и f $_{\rm жc}$ выбираем марку водяного экономайзера и выписываю его характеристику.

Экономический эффект от установки водяного экономайзера:

$$\mathbf{q'}_{_{_{\mathrm{JK}}}} = rac{D}{B}(h_2 - h_{_{_{\mathrm{II.B.}}}})$$
 ,КДж/кг $\mathbf{q}_{_{_{\mathrm{JK}}}} = rac{q'_{_{_{\mathrm{JKB}}}}}{\mathbf{Q}_{_{_{\mathrm{II}}}}^{\mathrm{P}}} \cdot 100$, %

4.7. Расчет водяного экономайзера

 d_{np} - величина непрерывной продувки, %

 $t_{yx}^{\frac{3\kappa}{9\kappa}}$ - температура уходящих газов из водяного экономайзера, ${}^{\circ}\mathrm{C}$

t_{п.в.} - температура питательной воды на входе в экономайзер, °С

$$\phi$$
 - коэффициент сохранения тепла, $\phi = 1 - \frac{q_5}{100}$

а воздуха водяного экономайзера

 $\alpha^{\text{кп}}$ - коэффициент избытка воздуха котельного пучка

С_в - теплоемкость воздуха,

 V^0 - теоретический объем воздуха

t _{х.в.} - температура холодного воздуха

Р – Рабочее давление в котле

4.7.1 Определяем энтальпию питательной воды на выходе из экономайзера из уравнения теплового баланса.

$$D (1+d_{np})(h_2-h_{n.B.}) = \phi B(I_2+I_B-I_{vx}) [\kappa B_T]$$

Откуда
$$h_2 = \frac{j\,B(I_2 + I_{_{\rm B}} - I_{_{
m yx}})}{D(1 + d_{_{
m np}})} + h_{_{
m IIB}}$$
 , [КДж/кг]

 I_2 - энтальпия продуктов горения, КДж/кг определяется по табл. 2 расчета или по I $-\theta$ диаграмме, зная температуру продуктов сгорания на выходе из газохода перед водяным экономайзером.

4.7.2 Зная h₂ по термодинамическим таблицам воды и водяного пара находим t₂ температуру воды на выходе из экономайзера.

Если $t_{\text{пъв}}$ из водяного экономайзера будет на $20-50^{\circ}$ С меньше $t_{\text{нас}}$ в котле, то экономайзер принимаю некипящий.

Если t_{п.в.} из водяного экономайзера выше t кипения в барабане котла, следует

$$I_{\rm B} = C_{\rm B} (\alpha_{\rm B} \cdot \alpha) \cdot V^0 t_{\rm VB} (K \coprod w/\kappa \Gamma)$$

α - коэффициент избытка воздуха в газоходе перед водяным экономайзером

D - Паропроизводительность, т/ч; кг/с

 I_{yx} - энтальпия уходящих продуктов сгорания, КДж/кг

$$t_{\text{Hac}} - t_{\text{II} \cdot \text{B}} = ?$$
.

Определяем поверхность нагрева водяного экономайзера:

$$H_{B9} = \frac{D(1+d_{np}) \cdot 10^3}{K_{B.9.} \cdot \Delta t_{B9}}$$
, M²

4.7.3 Определяем температурный напор.

Строим график изменения температуры по поверхности теплообмена водяного экономайзера.

 $t_{\, \text{п.с.}}$ на входе берется из расчета последнего котельного пучка

 I_{e} – количество тепла, внесенное в газоход с присасываемым воздухом

$$I_{e} = C_{e} (\alpha_{1} - \alpha) V^{o} t_{xe}$$

 C_e – теплоемкость воздуха, $C_e = 1.3 \text{ кДж/м}^2 \cdot \text{град}$

 $t_{rg} - 25-30^{\circ}C$

α – коэффициент избытка воздуха перед конвективной поверхностью (котельным пучком)

α₁ – коэффициент избытка воздуха в первом котельном пучке

 I_1 и I'_1 – энтальпии продуктов сгорания, соответствующие заданным температурам в первом котельном пучке (см курсовой проект-раздел «Расчет энтальпии продуктов сгорания»)

 I_{a} – энтальпия продуктов сгорания перед котельным пучком, определяю методом интерполяции

$$I_{\partial}= \ \frac{I_{\delta}-I_{_{M}}}{100} \cdot (t_{\partial}-t_{_{M}}) + I_{_{M}}$$
 , кДж/кг

 Γ де t_{∂} - действительная температура продуктов сгорания – получена путем расчетов на выходе из топочной камеры.

Δt – среднелогарифмическая разность температур подсчитывается дважды относительно заданных температур t_1 и t'_1 и подставляется в уравнение

$$\Delta t_{1} = \frac{\theta' m - \theta_{1}}{2.3 \lg \frac{\theta' m - t_{\text{Hac}}}{\theta_{1} - t_{\text{Hac}}}}, {^{\circ}C}$$

$$\Delta t'_{1} = \frac{\theta' m - \theta_{1}}{2.3 \lg \frac{\theta' m - t_{\text{Hac}}}{\theta'_{1} - t_{\text{Hac}}}}, {^{\circ}C}$$

где θ'_m – дествительная температура продуктов сгорания на выходе из топочной камеры, °С

 θ_{1} – начальная температура в первом котельном пучке, ${}^{\circ}$ С

 θ'_{I} – конечная температура в первом котельном пучке, o С

t_{нас} – температура насыщения при определенном давлении.

К – коэффициент теплопередачи подсчитывается дважды К₁ и К'₁

$$K = \frac{\alpha_{\pi 1} + \omega_1 \alpha_{\kappa 1}}{1 + \zeta(\alpha_{\pi 1} + \omega_1 \alpha_{\kappa 1})}$$
, Вт/м²-град

$$K' = \frac{\alpha'_{\pi 1} + \omega_2 \alpha_{\kappa 1}}{1 + \zeta(\alpha'_{\pi 1} + \omega_2 \alpha_{\kappa 1})} \ , \text{Вт/м}^2 \cdot \text{град}$$

 ω – коэффициент, учитывающий неполноту омывания нагрева, $\omega = \omega_1 = \omega_2 =$

 ζ – коэффициент загрязнения поверхности нагрева, $\zeta = 0.02$, м²-град/Вт

 α_{π} – коэффициент теплопередачи излучением

$$\alpha_{_{\Pi 1}} = \alpha_{_{H}1} \cdot a$$
, $B_{T}/_{M}^{2} \cdot град$ запыленный $\alpha'_{_{\Pi 1}} = \alpha_{_{H}2} \cdot a$, $B_{T}/_{M}^{2} \cdot град$ поток (тв. топливо мазут)

$$\alpha_{n1}=\alpha_{H1}\cdot a\cdot c_{r}$$
, Вт/м $^{-}$ -град незапыленный $\alpha'_{n1}=\alpha_{H2}\cdot a\cdot c_{r}$, Вт/м 2 -град поток (для газа)

а – степень черноты газового потока,

 $\alpha_{\!\scriptscriptstyle H}$ – коэффициент теплоотдачи – определяем по средним температурам.

Определяем средние температуры:

$$\theta_{cp1} = \frac{\theta'_m + \theta_I}{2}, {}^{o}C$$

$$\theta_{cp2} = \frac{\theta'_m + \theta_2}{2}, {}^{o}C$$

Определяем температуру стенки трубы конвективной поверхности

$$t_{cr} = t_{Hac} + \Delta t$$
, °C

 $\Delta t = 60$ °C — при сжигании твердого топлива.

t_{нас} – температура насыщения, °С

По номограмме (приложение 1) находим $\alpha_{{\mbox{\tiny H}}1}$ и $\alpha_{{\mbox{\tiny H}}2}$

Определяем степень черноты газового потока. При этом необходимо вычислить суммарную оптическую величину.

$$\kappa_{D}S = (k_{\Gamma}r_{n} + k_{3\Pi}\mu)PS$$

 $k_{\rm r}$ – коэффициент ослабления лучей трехатомными газами – находим по номограмме (Приложение 2)

$$P_{\Pi}S = (r_{H2O} + r_{RO2})S$$

где S – толщина излучающего слоя, м

$$S = 0.9 d_H(\frac{4}{\pi} \cdot \frac{S_1 \cdot S_2}{d_H^2} - 1), M$$

 ${
m d}_{{
m H}}$ – наружный диаметр трубы конвективной поверхности – из описания котла.

 μ – концентрация золовых частиц в продуктах сгорания (см. Курсовой проект, раздел «Рачет продуктов сгорания»)

 $\kappa_{\scriptscriptstyle 3Л}$ – коэффициент ослабления лучей золовыми частицами. При сжигании твердого топлива в слоевых топках $\kappa_{\scriptscriptstyle 3Л}=0$

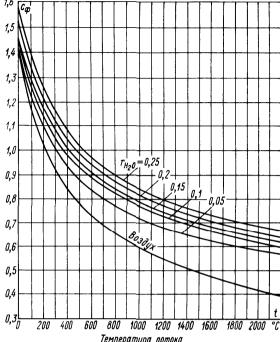
 $r_{
m H2O}$ — объемная доля водяных паров в продуктах сгорания (см. Курсовой проект, табл.1)

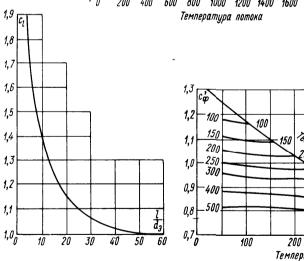
 $r_{\rm RO2}$ — объемная доля трехатомных газов в продуктах сгорания (см. Курсовой проект, табл.1)

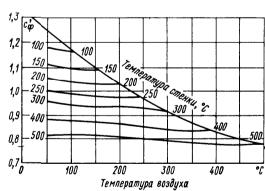
 $P = 1 \text{ мПа; } P_{\pi} - \text{суммарная объемная доля}$

Определяем а – степень черноты газового потока – по номограмме (Приложение 3)

Определяем коэффициент теплоотдачи излучением α_{n1} и α'_{n1}

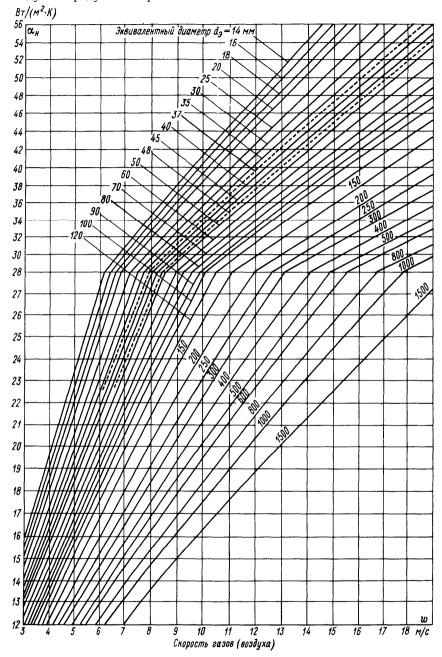

Определяем коэффициент теплоотдачи конвекцией при поперечном омывании коридорных, шахматных пучков.


$$\alpha_{\kappa 1} = \alpha_{\rm H1} c_{\rm z1} c_{\rm S1} c_{\rm \phi1}$$
 , ${\rm BT/M}^2$ -град


$$\alpha'_{\kappa 1} = \alpha'_{H1} c'_{z1} c'_{S1} c'_{\phi 1}$$
, Вт/м²-град

где c_z – поправка на число рядов труб по ходу продуктов сгорания – находим по номограмме (Приложение 4 или 4а или 5)

Число рядов труб определяем из характеристик котла.



При охлаждении продуктов сгорания и воздуха $\alpha_{\rm K} = c_{\Phi} c_l \alpha_{\rm H}$, ${\rm Br/(M^{a_*} \ K)}$; при нагревании воздуха $\alpha_{\rm K} = c_{\Phi}' c_l \alpha_{\rm H}$, ${\rm Br/(M^{a_*} \ K)}$

Приложение 5 Коэффициент теплоотдачи конвенцией при продольном омываний для воздуха и продуктов сгорания

 c_S – поправка на компановку пучка – находим по номограмме (Приложение 4 или 4а или 5) Для этого определяем σ_1 и σ_2

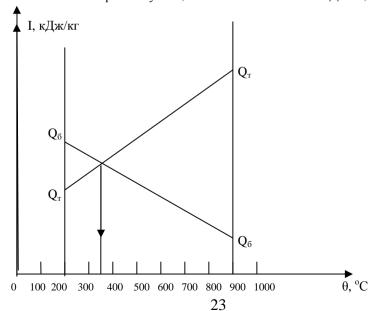
$$\sigma_1 = \frac{S_1}{d_{_H}}$$

$$\sigma_2 = \frac{S_2}{d_H}$$

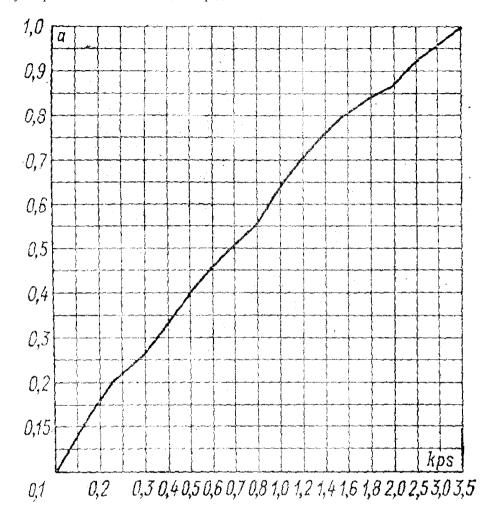
Где $S_{1\,\text{и}}$ S_2 — поперечный и продольный шаг труб — берем из описания котла. $d_{\text{н}}$ — наружный диаметр трубы конвективной поверхности — из описания котла. c_{ϕ} — коэффициент, учитывающий влияние изменения физических параметров потока — находим по номограмме (Приложение 4 или 4а или 5) $\alpha_{\text{н}}$ — коэффициент теплоотдачи — находим по номограмме (Приложение 4 или 4а или 5)

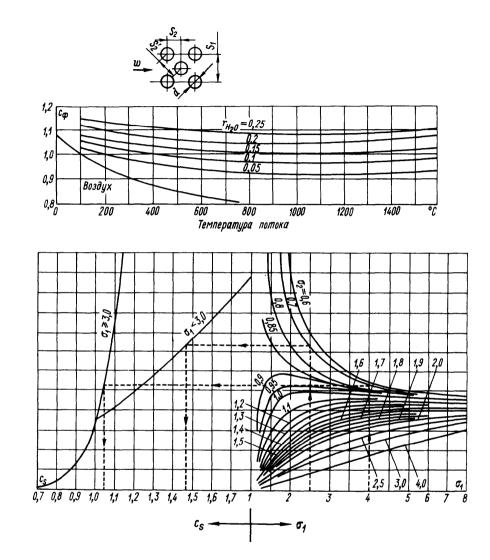
$$W_1 = \frac{B \cdot V_r(\theta_{cp1}) + 273}{F \cdot 273}$$
, m/c

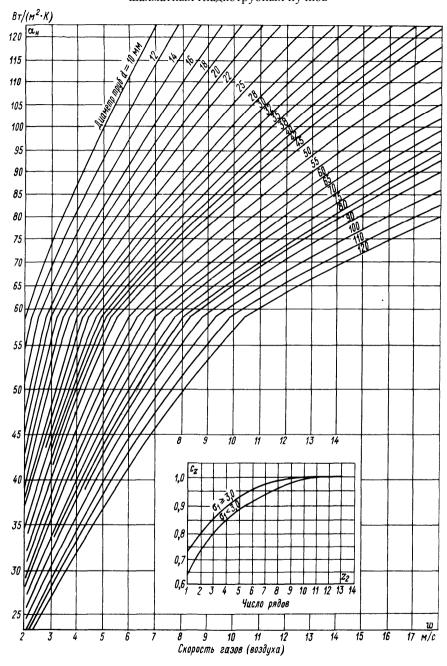
$$W'_1 = \frac{B \cdot V_r(\theta'_{cp1}) + 273}{F \cdot 273}, \text{ m/c}$$

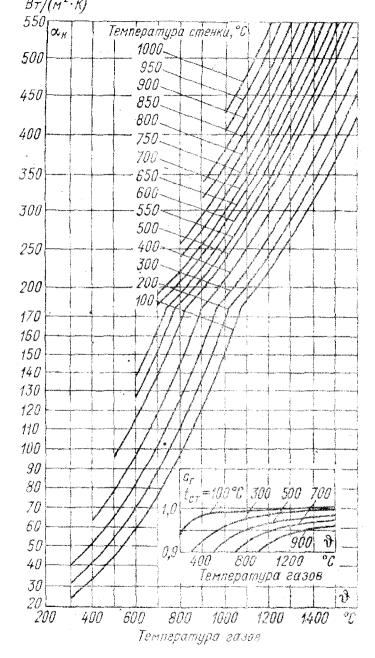

F – живое сечение для прохода продуктов сгорания газохода – берем из характеристик котла

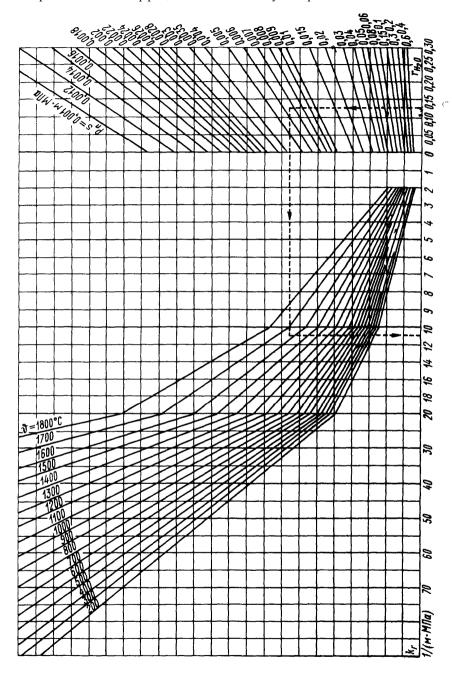
 V_{Γ} – действительный суммарный объем продуктов сгорания в первом котельном пучке (см. табл. 1 Курсового проекта)

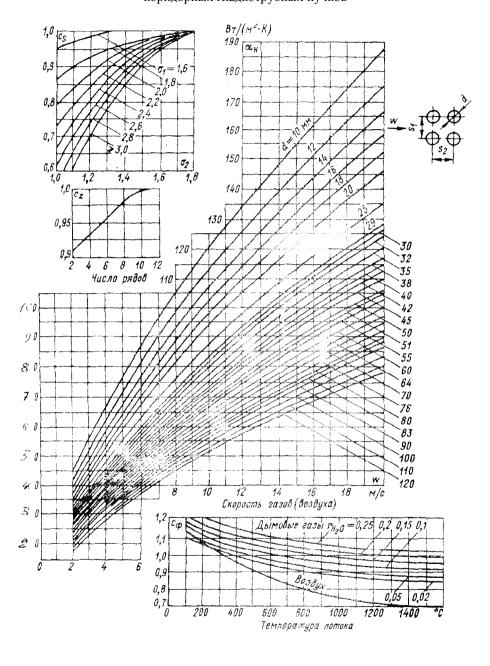

 θ_{cp1} и θ'_{cp1} – средние расчетные температуры, °C


В – расход топлива на котел, кг/с


Решаем 2 уравнения теплопередачи (см. ранее) и сравниваем правую и левую стороны. Затем строим «График определения температуры за первым котельным пучком» на миллиметровой бумаге, масштаб: в 1 см. I-100кДж/кг; $\theta-50\,^{\circ}$ С


Приложение 3 Степень черноты продуктов сгорания а в зависимости от суммарной оптической толщины среды





Приложение 1 Коэффициент теплоотдачи излучением $\beta \tau / (M^2 \cdot K)$

